Molecular signatures-based prediction of enzyme promiscuity

نویسندگان

  • Pablo Carbonell
  • Jean-Loup Faulon
چکیده

MOTIVATION Enzyme promiscuity, a property with practical applications in biotechnology and synthetic biology, has been related to the evolvability of enzymes. At the molecular level, several structural mechanisms have been linked to enzyme promiscuity in enzyme families. However, it is at present unclear to what extent these observations can be generalized. Here, we introduce for the first time a method for predicting catalytic and substrate promiscuity using a graph-based representation known as molecular signature. RESULTS Our method, which has an accuracy of 85% for the non-redundant KEGG database, is also a powerful analytical tool for characterizing structural determinants of protein promiscuity. Namely, we found that signatures with higher contribution to the prediction of promiscuity are uniformly distributed in the protein structure of promiscuous enzymes. In contrast, those signatures that act as promiscuity determinants are significantly depleted around non-promiscuous catalytic sites. In addition, we present the study of the enolase and aminotransferase superfamilies as illustrative examples of characterization of promiscuous enzymes within a superfamily and achievement of enzyme promiscuity by protein reverse engineering. Recognizing the role of enzyme promiscuity in the process of natural evolution of enzymatic function can provide useful hints in the design of directed evolution experiments. We have developed a method with potential applications in the guided discovery and enhancement of latent catalytic capabilities surviving in modern enzymes. AVAILABILITY http://www.issb.genopole.fr~faulon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach

Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...

متن کامل

Origins of specificity and promiscuity in metabolic networks.

How enzymes have evolved to their present form is linked to the question of how pathways emerged and evolved into extant metabolic networks. To investigate this mechanism, we have explored the chemical diversity present in a largely unbiased data set of catalytic reactions processed by modern enzymes across the tree of life. In order to get a quantitative estimate of enzyme chemical diversity, ...

متن کامل

Modeling catalytic promiscuity in the alkaline phosphatase superfamily

In recent years, it has become increasingly clear that promiscuity plays a key role in the evolution of new enzyme function. This finding has helped to elucidate fundamental aspects of molecular evolution. While there has been extensive experimental work on enzyme promiscuity, computational modeling of the chemical details of such promiscuity has traditionally fallen behind the advances in expe...

متن کامل

Exploiting Enzyme Promiscuity for Rational Design

Enzymes are today well recognized in various industrial applications, being an important component in detergents, and catalysts in the production of agrochemicals, foods, pharmaceuticals, and fine chemicals. Their large use is mainly due to their high selectivity and environmental advantage, compared to traditional catalysts. Tools and techniques in molecular biology offer the possibility to sc...

متن کامل

A Measure of the Promiscuity of Proteins and Characteristics of Residues in the Vicinity of the Catalytic Site That Regulate Promiscuity

Promiscuity, the basis for the evolution of new functions through 'tinkering' of residues in the vicinity of the catalytic site, is yet to be quantitatively defined. We present a computational method Promiscuity Indices Estimator (PROMISE)--based on signatures derived from the spatial and electrostatic properties of the catalytic residues, to estimate the promiscuity (PromIndex) of proteins wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 26 16  شماره 

صفحات  -

تاریخ انتشار 2010